Journal of Postgraduate Medicine
 Open access journal indexed with Index Medicus & EMBASE  
     Home | Subscribe | Feedback  

Year : 1979  |  Volume : 25  |  Issue : 4  |  Page : 207-212  

Echocardiographic features of right ventricular volume overload

Lilam S Shah, AS Vengsarkar, KG Nair 
 Department of Cardiology, K. E.M. Hospital and Seth G. S. Medical College, Parel, Bombay 400 012, India

Correspondence Address:
Lilam S Shah
Department of Cardiology, K. E.M. Hospital and Seth G. S. Medical College, Parel, Bombay 400 012


Interventricular septal motion is studied in sixty tow cases clas­sified into 3 groups; Gr. 1-right ventricular volume overload (RVVO); Gr. II-combined right ventricular volume overload and left ventricular volume overload (RVVO + LVVO); Gr. III-com­bined right ventricular volume overload and right ventricular pres­sure overload (RVVO + RVPO). A linear relationship was obtained between the right ventricu­lar dimension index (RVDI) obtained echocardiographically and the magnitude of the left to right shunt at the atrial level (Qn/Qs). Two rare instances of false negatives in a hemodynamically in­significant left to right shunt and in a large ASD are reported. Modification of abnormal septal motion in Gr. II and Gr. III is studied. Lesion specific features of certain anomalies i.e. Ebstein«SQ»s ano­maly, total anomalous pulmonary venous return (TAPVR) and en­docardial cushion defects (ECD) are discussed.

How to cite this article:
Shah LS, Vengsarkar A S, Nair K G. Echocardiographic features of right ventricular volume overload.J Postgrad Med 1979;25:207-212

How to cite this URL:
Shah LS, Vengsarkar A S, Nair K G. Echocardiographic features of right ventricular volume overload. J Postgrad Med [serial online] 1979 [cited 2020 Sep 22 ];25:207-212
Available from:

Full Text


Echocardiography has now become an established, safe and non-invasive technique in diagnosing various cardiac conditions, both congenital [6] and acquired Edler et a [3] noted echoes between the tricuspid and mitral valves and sug­gested the ventricular septum as the source of these echoes. Popp et 15 in 1969 analysed these echoes in terms of location and motion. Analysis of septal echoes is -found-to be valuable in the diagnosis of various congenital heart diseases, cardiomyopathy, coronary artery disease and in the assessment of left ventricular function. An attempt is made in this paper to study the echocardiographic features of various condition giving rise to right ventricular volume overload with special emphasis on the role played by septal motion patterns.

Two echocardiographic features are considered; abnormal septal motion and right ventricular dimension. [12],[19] These two diagnostic echocardiographic fea­tures are studied in three groups-(1) right ventricular volume overload (RVVO); .(2) combined right and left ventricular volume overload. (RVVO + LVVO); (3) combined right ventricu­lar volume overload and pressure. over­load (RVVO+RVPO). Lesion specific echocardiographic features in the right ventricular volume overload are des­cribed.

 Material and Methods

Sixty two cases were admitted in the Department of Cardiology,, K.E.M. Hos­pital, Bombay, from May 1975 onwards. Detailed case histories were taken and clinical examination was done in each case. Routine 12 lead electrocardiogram, X-ray chest and Frank Vectorcardio­gram were taken for all patients. Cardiac catheterization and angiocardiography were performed in these cases.

[Table 1] shows echocardiographic studies in three different groups.

The group of right ventricular volume overload was comprised of atrial septal defect (38 cases), total anomalous pulmo­nary venous connection (1 case), and Ebstein's anomaly (3 cases).

The second group of right ventricular volume overload + left ventricular volume overload was comprised of atrial septal defect with mitral regurgitation (4 cases), atrial septal defect, ventricular septal defect and mitral regurgitation (1 case), ventricular septal defect with tricuspid regurgitation (3 cases), rupture sinus of valsalva into the right atrium (1 case), and biventricular endmyocar­dial fibrosis with mitral regurgitation and tricuspid regurgitation (1 case).

Third group of right ventricular volume overload plus right ventricular pressure volume overload was comprised of primary pulmonary hypertension with tricuspid regurgitation (8 cases), atrial septal defect with pulmonary hyperten­sion (1 cases), and atrial septal defect with pulmonary stenosis (1 case).

Echocardiographic study was carried out in all these cases. Patients were studied in supine position.

Unirad Ultrasonoscope with 2.25 mHz. transducers, 1 cm. diameter focused for 4 to 7 cms. was used. Pulse repeatition rate was 1000 pulses/sec. Infants were studied with a 1 cm., 5 mHz transducer focused for 3 to 5 cms. Aquasonic jelly was used to have an airless firm contact between the transducer and anterior chest wall; ultrasounds were obtained on screen on `M' mode scan. Photographic recordings were made with a 400 ASA 120 Graflex roll film camera or more recently with a Honeywell strip chart recorder.

We used the technique described by Popp et al [15] for recording interventricu­lar septum (IVS). At the chordal level, transducer echoes, anterior chest wall echoes (ACW), anterior right ven­tricular wall echoes (ARVW) right sep­tum (RS), left septum (LS), chordal echoes, L.V. post wail endocardial echoes were recognised in the same plane (See [Figure 1] on page 208A). Septal motion was studied and ventricular dimensions were measured in the same plane. ECG signal was recorded along with these echoes in order to study the various echoes during the different phases of cardiac cycle. On the basis of septal motion pattern each case was classified as having normal or paradoxical septal motion (type A or B).

Right ventricular dimension (RVD) was measured from right ventricular epicardium to right septum (RS) in ven­tricular end diastole, (see [Figure 2] on page 208A), right ventricular dimension index was obtained as RVD/BSA (BSA = body surface area obtained from the height and weight of the patient from Dubois' chart)

The other echocardiographic measure­ments included left ventricular dimen­sion during end-diastole (LVIDd) and end-systole (LVIDs), left ventricular posterior wall thickness (LVPW), left atrial size; all these were computed by standard measurements reported ear­lier. [4],[8]


The findings obtained in all the 62 patients are depicted in [Table 2].

[Table 2] shows that in group I (RVVO) all the cases showed abnormal septal motion; 35 cases showed type A(see [Figure 2] on page 208A) and 7 cases showed type B (see [Figure 3] on page 208 A) motion. In group II (RVVO + LVVO) paradoxi­cal septal motion was normalized in all but one case. In group III (RVVO + RVPO) 6 cases showed normal septal motion, 3 cases showed type A and 1 case showed type B septal motion.

In case of right ventricular volume overload (RVVO), in group I (RVVO) right ventricular dimension index (RVDI) obtained echocardiographically was plot­ted against PBF (Pulmonary blood flow/ systemic blood flow = Qp/Qs) obtained at cardiac catheterization (See [Figure 4] be­low). This showed a linear relation­ship between the two (r = 0.473) ; (p al [1] were the first to des­cribe septal motion pattern in right ven­tricular volume overload; they divided them into two types: Type A and Type B. Both patterns were characterized by an abnormal anterior systolic movement of the interventricular septal echoes. In Type A septal echoes at chordal level move anteriorly during the ventricular systole along with the normal systolic an­terior motion of left ventricular posterior wall endocardium. In type B septal echoes at chordal level are flattened out during ventricular systole, after an initial ante­rior movement. Two echo cardiographic criteria are employed to diagnose right ventricular volume overload; (1) para­doxical septal motion at chordal level and (2) increased right ventricular dimension index (RVDI). The normal range of right ventricular dimension index is 0.3 to 1.1cm /m 2 (mean 0.7 cm/m 2 ) [1],[20] Abnormal septal motion is therefore seen in ostium secondum ASD, ostium primum ASD, Ebstein's anomaly, tricuspid insuffi­ciency, pulmonary insufficiency and ano­malous pulmonary venous connection. In our study of 42 cases of right ventricular volume overload (RVVO), 35 showed type A septal motion and 7 cases showed type B septal motion.

It is of crucial importance to take me­ticulous care while recording septal echoes to have the beam oriented below the septal pivot; this will eliminate the possibility of false positives . [7]

Tajik et al [18] have suggested that the magnitude of the shunt may be an im­portant factor in determining interventri­cular septal motion. This is supported by Kerber's experimental model. [9] This ex­periment suggests that the type of septal motion abnormality and RVD are. direct­ly related to the degree of left to right shunt at atrial level. In the present study of 30 cases of left to right shunt at atrial level a linear relationship between the RVD obtained echocardiographically with Qp/Qs obtained on cardiac catheteriza­tion was observed. No definite correla­tion was observed between the septal mo­tion pattern and the magnitude of the left to right shunt.

Normal interventricular sptal motion has been observed in proven cases of left to right shunt at atrial level where the shunt magnitude (Qp/Qs) was less than 1.2. [16],[18] There were two such cases in this series where echoes showed normal interventricular septal motion. The first case (M.S. F/9) had clinical findings and the ECG and X-ray suggestive of A.S,D.; cardiac catheterization proved haemody­namically insignificant left to right shunt at the atrial level (Op/Qs). Her echo­cardiogram showed normal septal motion and RVD within normal range. Another case (S.P. F/12) was clinically suspected to have an ASD. Echocardiogram show­ed normal I.V.S. motion, RVDI was 1.2 cm/m. 2 Cardiac catheterization was not performed in this case. At surgery she was found to have secundum ASD (2 cm. x 1.5 cm). In both these cases therefore the left to right shunt was not large enough to produce RVVO and ab­normal I.V.S. motion. Our findings are thus consistent with the reported obser­vations. The technique of non-invasive detection of RVVO echocardiographically by studying septal motion has a high sen­sitivity; the reports on false negatives, in the laterature are indeed very scarce.

Combined Right Ventricular Volume Overload and Left Ventricular Volume Overload:

Kerber [9] in his experimental studies produced shunts between aorta to left atrium and right atrium to left atrium pro­ducing biventricular volume overload. He showed that there was no change in I.V.S. motion, and postulated that abnormality of I.V.S. motion during ventricular ejec­tion in pure RVVO was a manifestation of unequal stroke volume, the right ven­tricular stroke volume being larger and exceeding the left ventricular stroke vo­lume. Conditions giving rise to LVVO will increase the LV stroke volume balancing the RV stroke volume and thus normalizing the paradoxical motion. The conditions known to modify abnor­mal I.V.S. motion in case of RVVO are-­

1.Small left to right shunt at atrial level (Qp/Qs less than 1.2)

2. Associated LVVO caused by VSD, PDA, MR, AR.

3. Increased LVEDP.

4. Relative degree of pulmonary hy­pertension. [16]

In the present series ten cases of com­bined RVVO and LVVO were included. In all except one case echogram showed normal systolic posterior I.V.S. motion. The exception (N.G. M/12) was a case of corrected VSD and anomalous obstructive right ventricular muscle bands. As the patient presented with remanifestation of symptoms a repeat haemodynamic study was done. It showed significant left to right shunt in the ventricle and severe tricuspid regurgitation. Echogram show­ed Type A septal motion and RVD 2 cm. In this case therefore the RVVO and RV stroke volume was larger and exceeded LV stroke volume producing a paradoxi­cal septal motion (See [Figure 5] on page 208 A).

Right Ventricular Volume and Pressure Overload (RVVO + RVPO):

In this group there were 10 cases of combined right ventricular volume and pressure overload. Three cases showed type A septal motion; one showed type B motion; the remaining 6 showed normal septal motion.

Lesion Specific Echocardiographic Featu­res in Right Ventricular Volume Over­load:

Echocardiographic features of Ebstein's anomaly, total anomalous pulmonary ve­nous return and endocardial cushion de­fects have been discussed below with a few examples of each condition.

In two of our three cases of Ebstein's anomaly, a simultaneous high speed re­cording of both A-V valve echoes dis­played excessively delayed tricuspid clo­sure only in one case (100 msec.) (see [Figure 6] on page 208 B). In the other two cases tricuspid closure delay was 55 msec. and 50 msec. respectively. All these cases, however, showed abnormal septal motion and increased RVDI to suggest severe RVVO. As reported earlier [10],[11],[13],[14],[17], there was a greater easy of recording tri­cuspid valve than the mural valve in three cases of Ebstein's anomaly in the present series.

In one case of total anomalous pulmon­ary venous return (TAPVR) echocardio­gram showed paradoxical septal motion and increased RVD (2.5 cm) suggesting RVVO. An echo free space was indenti­fied posterior to the posterior LA wall representing the common pulmonary venous channel. [5] , [15] (See [Figure 7] on page 208 B).

Four echocardiographic features of A-V communis have been described by Wil­liams and Rudd. [20] In this series two cases of ostium primum showed paradoxical septal motion and increased RVD. Both these cases showed exaggerated anterior mitral leaflet excursions in early diastole, traversing through the interventricular septum and seen in right ventricular ca­vity. There was absence of mitral valve echoes in late diastole due to prolonged mitral septal diastolic opposition. These findings suggest the presence of associated cleft mitral valve with ostium primum defects (See [Figure 8] on page 208 B).

Thus echocardiography has helped to diagnose pure RVVO, associated volume overload of the left ventricle, pressure overload of the right ventricle and speci­fic lesions causing RVVO.


1Diamond, M. A., Dillon, J. C., Feigen­baum, H., Haine, C. L. and Chang S. C. Echocardiographic features of atrial septal defect, Circulation, 43: 129-135, 1971.
2DuBois,: "Basal Metabolism in Health and Disease." 3rd Edition, Lea and Febiger, Philadelphia, 1936.
3Edler, I., Gustafson, A., Karlefors, T. and Christensson, B.: Ultrasound Cardio­graphy: Acta Med. Scandinav., 170 (Suppl. 370): 66-82, 1961.
4Feigenbaum, H., Popp. R. L. and Chio, J. N.: Left ventricular wall thickness measured by ultrasound. Arch. Intern. Med., 121: 391-395, 1968.
5Glasser, J., Whitman, V. and Liebman, J.: The differential diagnosis of total anoma­lous pulmonary venous drainage in in­fancy by echocardiography. Circulation, 46 (Supplement II): 11-38, 1972.
6Godman, M. J., Tham, P. and Longford­kidd, B. S.: Echocardiography in the evaluation of the cyanotic newborn infant. Brit. Heart J., 36: 154-166, 1974.
7Hagan, A. D., Francis, G. S., Sahn, D. J., Karliner, J. S., Friedman, W. F. and O'Rourke, R. A.: Ultrasound evaluation of systolic anterior septal motion in patients with and without right ventricular volume overload. Circulation, 50: 248-254, 1974.
8Hirata, T., Wolfe, S. B., Popp, R. L., Helmen, C. H. and Feigenbaum, H.: Esti­mation of left atrial size using ultrasound. Amer. Heart J., 78: 43-52, 1969.
9Kerber, R. E., Dippel, W. F. and Abboud, F. M.: Abnormal motion of the interven­tricular septum in right ventricular volume overload, Experimental and clini­cal echocardiographic studies. Circulation, 48: 86-96, 1973.
10Kotler, M. N. and Tabutznik, B.: Recogni­tion of Ebstein's anomaly by ultrasound technique. Circulation, 44 (Supplement II): 11-34, 1971.
11Lundstrom, N. R.: Echocardiography in the diagnosis of Ebstein's anomaly of the tricuspid valve. Circulation, 47: 597-605, 1973.
12McCann, W. D., Harbold, N. B. and Giuliani, E. R.: The echocardiogram in right ventricular overload. J. Amer. Med. Assoc., 221: 1243-1245, 1972.
13Miner, S., Meyer . R. A., Venablis, A. W., Korfhagen, J. and Kaplan, S.: Mitral and tricuspid valve closure in congenital heart disease. Circulation, 53: 513-518. 1976.
14Paquet, M. and Gutgesell, H.: Echocardio­graphic features of total anomalous pul­monary venous connection. Circulation, 51: 599-605, 1975.
15Popp, R. L., Wolfe, S. B., Hirata. T. and Feigenbaum H.: Estimation of right and left ventricular size by ultrasound. A study of echoes from the interventricular septum. Amer. J. Cardiol., 24: 523-530, 1969.
16Tajik, A. J., Gau, G. T., Ritter, D. G. and Schattenberg, T. T.: Echocardiographic pattern of right ventricular diastolic volume overload. Circulation, 46: 36-43, 1972.
17Tajik, A. J., Gau, G. T., Ritter, D. G. and Schattenberg. T. T.: Echocardiogram in Ebstein's anomaly with WPM pre-excita­tion syndrome-type B. Circulation, 47: 813-818, 1973.
18Tajik A. J., Gau, G. T. and Schattenberg, T. T.: Echocardiogram in total anomalous pulmonary venous drainage. Mayo Clin. Proc., 47: 247-250, 1972.
19Tajik, A. J. Gau G. T. Schattenberg. T. T. and Ritter. D. G.: Normal ventricular septal motion in atrial septal defect. An echocardiographic observation. Mayo Clin. Proc., 47: 635-638 1972.
20Williams, R. and Rudd. M.: Echographic features of endocardial cushion defect. Circulation, 49: 418-422, 1974.

Tuesday, September 22, 2020
 Site Map | Home | Contact Us | Feedback | Copyright  and disclaimer