Journal of Postgraduate Medicine
 Open access journal indexed with Index Medicus & ISI's SCI  
Users online: 14949  
Home | Subscribe | Feedback | Login 
About Latest Articles Back-Issues Articlesmenu-bullet Search Instructions Online Submission Subscribe Etcetera Contact
 :: Next article
 :: Previous article 
 :: Table of Contents
 ::  Similar in PUBMED
 ::  Search Pubmed for
 ::  Search in Google Scholar for
 ::Related articles
 ::  Article in PDF (256 KB)
 ::  Citation Manager
 ::  Access Statistics
 ::  Reader Comments
 ::  Email Alert *
 ::  Add to My List *
* Registration required (free) 

  IN THIS Article
 ::  Abstract
 ::  Methods Used to ...
 ::  Some Studies of ...
 ::  Reproducibility ...
 ::  Acknowledgement
 ::  References
 ::  Article Tables

 Article Access Statistics
    PDF Downloaded753    
    Comments [Add]    
    Cited by others 19    

Recommend this journal


Year : 2007  |  Volume : 53  |  Issue : 2  |  Page : 139-143

A new approach to the study of diet and risk of type 2 diabetes

1 Division of International and Indigenous Health, School of Population Health, the University of Queensland, Australia
2 Department of Epidemiology, School of Public Health, Harbin Medical University, P R, China

Date of Submission19-Apr-2006
Date of Decision16-Feb-2007
Date of Acceptance05-Mar-2007

Correspondence Address:
W Binyou
Department of Epidemiology, School of Public Health, Harbin Medical University, P R
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0022-3859.32219

Rights and Permissions

 :: Abstract 

Type 2 diabetes mellitus (T2DM) is a polygenetic disorder resulting from interaction of both hereditary and environmental factors. Diet is an important environmental factor in the development of T2DM. However, there existed inconsistent conclusions among previous studies. The validity of a study of associations between diet and diabetes depends on the method used in the study. Associations between individual nutrients/foods and T2DM have been explored even till today, but the controversy is still unsolved due to the limitations of the study methods such as interactions among nutrients. Emergence of analyses on dietary patterns and diabetes shows its popularity in the studies of associations of dietary patterns with T2DM, but only a few articles have been published. In this review, dietary-pattern-related studies since 1990 were identified by searching through Medline and PubMed in order to analyze methods used in the studies of diabetes. A dietary pattern approach was introduced as an alternative complementary way used to test associations of diet with risk of T2DM and the advantages of the studies of T2DM using this new approach are also explored. It is concluded that the dietary pattern approach shows its advantages over that using individual nutrients or foods in studies on associations between the diet and diabetes, but its reproducibility and validity for such effects, however, need to be further verified in different ethnic population-based on diverse eating habits. The long-term effects of a beneficial dietary pattern on T2DM also require clarifying in future studies.

Keywords: Approach, diet, dietary pattern, noninsulin-dependent diabetes mellitus, type 2 diabetes

How to cite this article:
Jinlin F, Binyou W, Terry C. A new approach to the study of diet and risk of type 2 diabetes. J Postgrad Med 2007;53:139-43

How to cite this URL:
Jinlin F, Binyou W, Terry C. A new approach to the study of diet and risk of type 2 diabetes. J Postgrad Med [serial online] 2007 [cited 2023 Oct 2];53:139-43. Available from:

Diet has been known for many years to play a key role as a risk factor in the development of chronic diseases.[1] Diet is thought to have important effects on the development of diabetes.[2],[3],[4],[5] For instance, it was reported that diabetes was related to a certain carbohydrate,[3],[6] fatty acid,[6] cereal fibers,[3] meat[7],[8] and drinking coffee[9] and sweet beverages.[10] Even so, there are inconsistent conclusions on studies on the relation of single diet to risk of type 2 diabetes mellitus (T2DM).[6] These analyses are valuable but to some extent they are confined by the theory and methods. Studying associations between diet and T2DM using single foods or nutrients is limited. For example, people take in nutrients not in isolation, but they ingest a variety of nutrients at the same time when consuming sorted foods. These nutrients may counteract or synergize each other.[11]

Recently, the emerging dietary pattern analyses have become an alternative and complementary way used to examine associations of diet with risk of chronic disease.[12] Dietary patterns (DP), also called eating patterns or food patterns, are "foods as they are actually consumed in various characteristic combinations".[13] Since the early 1980s, interest in dietary patterns has been growing with many studies focusing on the associations between dietary patterns and disease outcomes or biomarkers.[14] Dietary patterns represent not only combinations of different foods consumed, but also accumulative effects of overall diet on diseases and moreover they have associations with the risk of diabetes.[7],[15],[16]

In this review, a dietary pattern approach is introduced as an alternative and complementary way used to explore associations of diet with risk of T2DM. The advantages and disadvantages of the methods are also summarized based on studies on T2DM using both traditional and new approaches. Medline and PubMed were searched to identify diet-related studies published since 1990 by using key words "Type 2 diabetes", "noninsulin-dependent diabetes mellitus" and "dietary/food/eating pattern". Only full-text papers which were closely related to the review objectives were included, but those using dietary index to identify dietary patterns were excluded because of their inconsistency in defining a dietary pattern and their flexibility with study purposes.

 :: Methods Used to Define Dietary Patterns Top

Dietary patterns can be identified in terms of dietary indexes, but here we only discuss those defined using statistical exploratory ways such as factor analysis, cluster analysis and reduced rank regression.

Factor analysis approach

Factor analysis (FA) is a multivariate statistical technique and its dietary information used comes from food frequency questionnaires (FFQ) or dietary records. The analysis process generates pattern scores that summarize and then dissect the correlated structures of original food items. Then, the common and basic dimensions (i.e., factors or patterns) of food consumption are determined with this information. Of most researches, however, original food items measured were divided and reunited in small numbers into input variables, usually called food groups so as to be input into FA, that is, much information of consumed foods were compressed into several important factors by analyzing covariance structures of incepted foods.[17]

After statistical analyses, 2-13 pattern variables (also called factor scores) are usually obtained, but 2-4 in the commonest.[18] By calculating general scores of each DP and applying them to correlation and regression analyses, we are able to examine the relationships of each eating pattern to outcomes of interest, e.g., nutrient intakes, risks of diseases and other biochemical markers related to health.

Factor analysis is a convenient way to be used when DPs are to be identified based on the existing dietary data, but it is not a perfect way to do this. The performance of FA is quite easy. A researcher can simply run the FA procedure in any statistical software package such as SAS, STATA or SPSS to the input database.

Cluster analysis approach

Cluster analysis (CA) is another multivariate statistical approach to defining specialized dietary patterns. Compared with FA, CA classifies study individuals with relatively similarity, not food items, into subgroups. This is done by distributing individuals into the subgroups which are determined beforehand according to Euclidean Distances, with which the distances within groups are shorter than those between groups.[17] That is to say, CA is to attenuate the number of data to enter into the DPs, based on the differences in average food intakes of individuals[14] and in result, the diet of individuals within the same group is relatively identical, whereas that of those between groups is diverse.

Individuals can also be distributed into different subgroups by frequency of food consumption,[18],[19] percentage of energy supplied by each food or food group,[20] mean weight (in gram) of food intakes,[21] standardized nutrient intakes[22] or integration of both diet and biochemical results.[23]

K-means cluster analysis, which is installed in most statistic software packages such as STATA and SPSS, is the most widely used to define DPs,[22],[24],[25] especially for large sample size. Usually 2-8, but more often 5-6 clusters, are induced after completion of the clustering procedure, as reported in the published literature.[14] In addition, further analyses are required, for example, to interpret the defined DPs by comparing dietary features of each pattern.

Cluster analysis is an effective approach to measure exposure to diet and it can be used to explore the relationships among eating patterns, health and diseases.[26] Cluster analysis, like FA, can be employed directly with a readymade program, which has been installed in statistical software packages.

Both FA and CA are partially subjective, which makes their application limited. For instance, a researcher needs to determine in advance how many DPs to be retained, how to group foods or input food variables and how to name patterns generated.[14],[27] The subjectivity of FAs also presents with choosing rotation. In addition, either FA or CA induces DPs, independent of a disease, which may vary with the different populations studied. So, poor repeatability may appear in different studies.

Reduced rank regression approach

Reduced rank regression (RRR),[28],[29] also called maximum redundancy analysis (MRA), is an approach to inducing DP scores using PLS procedure in SAS software package. Reduced rank regression is neither an a priori approach nor an exploratory statistical one, but an a posteriori approach. It works with two different sets of variables, i.e. predictors and responses. The first set of variables may be food groups or the other nutrients and the second, biomarkers related to diseases of interest. Its strong point is that it can induce pattern scores by maximizing variation of explained concentrations of biomarkers and other mediated variables related to the studied diseases. So, RRR may be a useful tool in studying associations of diet with diseases.

For FA, it is necessary to solve for maximum variation in all predictor variables (e.g., food groups) and to identify scores, namely linear combinations (or functions). In contrast, RRR identifies linear functions of predictors, which explain as much response variation as possible.[30] Formally, principal component analysis is a special case of RRR in which predictors will be taken as responses; RRR equals multivariate linear regression only in the special occasion when there are merely responses.

RRR can be used to interpret variation of nutrients and nutrient-related responses through linear functions of food intakes. Compared with traditional FA, RRR is more flexible and efficient and can be employed to choose disease-specific responses in nutritional epidemiology and to identify the combination forms of food intakes.[28]

Reduced rank regression, like FA and CA, has its limitation when used to generate DPs.[28] Firstly, factor scores in RRR cannot perfectly measure dietary features, but they are just linear combinations of food intake information collected through FFQs which have a large bias in the measurement of food intakes.[31] Next, RRR, similar to FA and CA, uses the existing data to assess a factor score coefficient, which cannot be acquired from the diet data based on another population. This means that distinct diet information will result in somewhat different DPs. Schulze et al[32] recommended that omitting food groups with low score coefficients and ignoring weights of retained food groups should reduce dependence of data on DP variables. Last, although the objective of RRR is to interpret as much response variation as possible, predicted values of all responses may be greater than those of all the RRR factors. For example, Hoffmann and co-workers[28] indicated that the four nutrients (unsaturated/saturated fat, dietary fiber, magnesium and alcohol), in which they were interested, can better predict diabetes mellitus than the four factor scores generated with RRR can, but a diabetes model based on nutrients as independent variables cannot account for which foods are able to attenuate the risks of diabetes.

 :: Some Studies of the Associations Between Dietary Patterns and T2DM Top

Most observations dealing with relations between dietary patterns and T2DM depict the associations by conducting cross-sectional surveys with a posteriori approaches [Table - 1]. Factor analysis is mostly used to identify correlations of dietary patterns with diabetes. Slattery et al first identified two patterns with FA,[33] namely "prudent pattern" and "western pattern". After that, similar patterns were achieved in studies by others.[15],[34],[35],[36],[37] van Dam and co-workers[15] pointed out that prudent pattern score was related to reduction of risk of T2DM (RR for extreme quintiles, 0.84; 95%CI, 0.70-1.00), whereas the western dietary pattern score was associated with an increased risk of T2DM (RR=1.59; P trend < 0.001). The study also showed that people with high prudent pattern scores were older, physically more active, unlikely to smoke and more likely to be of hypercholesterolemia; in contrast, those with high western pattern scores were just opposite, but the associations did not change much after adjustment of physical activity, smoking, drinking, hypercholesterolemia and family history of diabetes. They also found that of all the foods characterized in the prudent pattern, whole grain had a strong inverse relation to, and all the main foods characterized in the western pattern were positively related to, risk of Type 2 diabetes.[15]

Heidemann et al[38] defined, using RRR, dietary patterns related to biomarkers of diabetes and studied their relations with the risk of T2DM. The dietary patterns were deduced from the data of food intakes of 48 food groups as exposure variables and from the data of biomarkers, as responses, including glycosylated hemoglobin (HbA1c), high density lipoprotein cholesterol (HDLC), C react+ves protein (CRP) and adiponectin. Then, they estimated the relation of scores to the risk of diabetes with logistic regression.

Heidemann and co-workers chose the four biomarkers based on the previous studies: 1) HbA 1c reflects raised levels of blood glucose, which is usually taken as a glycemic index for long-term control. The impairment of internal glucose homeostasis will cause increased risk of T2DM. 2) Studies[40],[41] showed that patients with insulin resistance and T2DM are often low in HDLC level, which can therefore be an indicator of onset of T2DM. 3) It was reported[39],[42] that diabetes is related to sub-clinically chronic inflammation which is characterized by the changes in protein contents at its acute stage. Among the changes is CRP which is currently the best indicator of potential risk of T2DM. 4) There is evidence[43] showing that adiponectin from fat cells is sensitive to insulin and anti-inflammation. Although the association between adiponectin and diabetes is not clear yet, plasma adiponectin level seems to be an independent indicator of risk of T2DM. Heidemann et al pointed out that the above four diabetes-related biomarkers could be affected by dietary components, particularly by alcohol, fat consumption and certain types of carbohydrates.

The dietary patterns defined by Heidemann and co-workers were characterized by high intakes of fresh fruits and low intakes of high-energy drinks, beer, red meat, poultry, meat products, legume and bread (excluding wholegrain bread). Subjects with high dietary pattern scores were high in levels of HDLC and adiponectin, but low in those of HBA 1c and CRP. After adjustment of multivariate, odds ratio (OR) of T2DM decreased with increases of dietary pattern scores (OR: 1.000.5900.5100.26 and 0.27).[38]

 :: Reproducibility and Validity of the Dietary Patterns Top

Studies on dietary patterns have drawn researchers a great interest, but a few articles can be found, in which reproducibility and validity of the dietary patterns were examined. In 1999, Hu et al[34] conducted a study on the reproducibility and validity of the dietary patterns created with FA, by collecting dietary information with the methods of FFQ and dietary records (DR) from the participants in a follow-up study on health personnel. Later, Khani et al[44] directed a relative survey and achieved a conclusion similar to Hu et al . The dietary patterns were validated in both studies.

Hu[45] and van Dam et al[15] separately defined two dietary patterns with FA and moreover these patterns were qualitatively similar in the two surveys with FFQ and DR. The first pattern, as they called "prudent pattern", was characterized as large intakes of vegetables, fruits, legumes, whole grains, poultry and fish; the second one, labeled "western pattern", was rich in processed meat, red meat, butter, French fries, fatty dairy products, eggs, sweet desserts and refined rice and flour. van Dam et al pointed out that reliable correlations of prudent and western patterns in two surveys with FFQ were 0.70 and 0.67, respectively and that the correlations of FFQ and DR in two surveys ranged between 0.45-0.74. Furthermore, the correlations of factor scores with nutrient intakes and plasma biomarker levels were in the prospected directions. Their findings showed that the main dietary patterns produced with FA based on dietary information collected with FFQ, were reasonably reproducible and valid.

Although some scientists[18],[26] wanted to examine validity of dietary patterns by CA, by comparison of nutrients or biochemical information among dietary patterns, there has been no information available to show their reproducibility and validity among dietary patterns. On the other hand, it is still not clear whether or not the same clusters will be produced based on different sources of dietary information (e.g., DR and FFQ). So we expect more relevant studies to be conducted in this area.

In conclusion, diet plays an important role in the prevention and treatment of diabetes in a nonpharmacologic way in terms of dietary patterns. Their reproducibility and validity for such effects, however, need to be further verified in different ethnic populations based on diverse eating habits. The long-term effects of a beneficial dietary pattern on T2DM also require clarifying in the future studies. From the point of view of treatment and prevention of diabetes,[46] dietary therapy or dietary modification is an important measure and dietary patterns seem more effective because they may be easily understood and willingly accepted by the public.

 :: Acknowledgement Top

I gratefully acknowledge my advisors, Prof. Wang and Dr. Terry Coyne for their kind direction to my study. I also appreciate the help from Dr. P. K. Newby.

 :: References Top

1.Joint WHO/FAO Expert Consultation on Diet NatPoCDG, Switzerland. Diet, nutrition and the prevention of chronic diseases report of a joint WHO/FAO expert consultation. WHO: Geneva; 2003.  Back to cited text no. 1    
2.Schulze MB, Hu FB. Primary prevention of diabetes: What can be done and how much can be prevented? Ann Rev Public Health 2005;26:445-67.  Back to cited text no. 2    
3.Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber and incident type 2 diabetes in older women. Am J Clin Nutr 2000;71:921-30.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]
4.Marshall JA, Hoag S, Shetterly S, Hamman RF. Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. The San Luis Valley Diabetes Study. Diabetes Care 1994;17:50-6.  Back to cited text no. 4    
5.Murphy NJ, Schraer CD, Thiele MC, Boyko EJ, Bulkow LR, Doty BJ, et al . Dietary change and obesity associated with glucose intolerance in Alaska Natives. J Am Diet Assoc 1995;95:676-82.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]
6.Hu FB, van Dam RM, Liu S. Diet and risk of Type II diabetes: The role of types of fat and carbohydrate. Diabetologia 2001;44:805-17.  Back to cited text no. 6  [PUBMED]  [FULLTEXT]
7.Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake and the risk of type 2 diabetes in women. Arch Intern Med 2004;164:2235-40.  Back to cited text no. 7  [PUBMED]  [FULLTEXT]
8.Schulze MB, Manson JE, Willett WC, Hu FB. Processed meat intake and incidence of Type 2 diabetes in younger and middle-aged women. Diabetologia 2003;46:1465-73.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]
9.van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: A systematic review. JAMA 2005;294:97-104.  Back to cited text no. 9  [PUBMED]  [FULLTEXT]
10.Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, et al . Sugar-sweetened beverages, weight gain and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004;292:927-34.  Back to cited text no. 10  [PUBMED]  [FULLTEXT]
11.Jacques PF, Tucker KL. Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr 2001;73:1-2.  Back to cited text no. 11  [PUBMED]  [FULLTEXT]
12.Hu FB. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr Opin Lipidol 2002;13:3-9.  Back to cited text no. 12  [PUBMED]  [FULLTEXT]
13.Schwerin HS, Stanton JL, Smith JL, Riley AM Jr, Brett BE. Food, eating habits and health: A further examination of the relationship between food eating patterns and nutritional health. Am J Clin Nutr 1982;35:1319-25.  Back to cited text no. 13  [PUBMED]  
14.Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr Rev 2004;62:177-203.  Back to cited text no. 14  [PUBMED]  [FULLTEXT]
15.van Dam RM, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann Intern Med 2002;136:201-9.  Back to cited text no. 15    
16.Montonen J, Knekt P, Harkanen T, Jarvinen R, Heliovaara M, Aromaa A, et al . Dietary patterns and the incidence of type 2 diabetes. Am J Epidemiol 2005;161:219-27.  Back to cited text no. 16  [PUBMED]  [FULLTEXT]
17.Schulze MB, Hu FB. Dietary patterns and risk of hypertension, type 2 diabetes mellitus and coronary heart disease. Curr Atheroscler Rep 2002;4:462-7.  Back to cited text no. 17  [PUBMED]  
18.Millen BE, Quatromoni PA, Copenhafer DL, Demissie S, O'Horo CE, D'Agostino RB. Validation of a dietary pattern approach for evaluating nutritional risk: The Framingham Nutrition Studies. J Am Diet Assoc 2001;101:187-94.  Back to cited text no. 18  [PUBMED]  
19.Pryer JA, Nichols R, Elliott P, Thakrar B, Brunner E, Marmot M. Dietary patterns among a national random sample of British adults. J Epidemiol Community Health 2001;55:29-37.  Back to cited text no. 19  [PUBMED]  [FULLTEXT]
20.Wirfalt AK, Jeffery RW. Using cluster analysis to examine dietary patterns: Nutrient intakes, gender and weight status differ across food pattern clusters. J Am Diet Assoc 1997;97:272-9.  Back to cited text no. 20  [PUBMED]  
21.Beaudry M, Galibois I, Chaumette P. Dietary patterns of adults in Quebec and their nutritional adequacy. Can J Public Health 1998;89:347-51.  Back to cited text no. 21  [PUBMED]  
22.Huijbregts PP, Feskens EJ, Kromhout D. Dietary patterns and cardiovascular risk factors in elderly men: The Zutphen Elderly Study. Int J Epidemiol 1995;24:313-20.  Back to cited text no. 22  [PUBMED]  [FULLTEXT]
23.Schroll K, Carbajal A, Decarli B, Martins I, Grunenberger F, Blauw YH, et al . Food patterns of elderly Europeans. SENECA Investigators. Eur J Clin Nutr 1996;50:S86-100.  Back to cited text no. 23    
24.Pryer JA, Cook A, Shetty P. Identification of groups who report similar patterns of diet among a representative national sample of British adults aged 65 years of age or more. Public Health Nutr 2001;4:787-95.  Back to cited text no. 24  [PUBMED]  [FULLTEXT]
25.Wirfalt E, Hedblad B, Gullberg B, Mattisson I, Andren C, Rosander U, et al . Food patterns and components of the metabolic syndrome in men and women: A cross-sectional study within the Malmo Diet and Cancer cohort. Am J Epidemiol 2001;154:1150-9.  Back to cited text no. 25  [PUBMED]  [FULLTEXT]
26.Quatromoni PA, Copenhafer DL, Demissie S, D'Agostino RB, O'Horo CE, Nam BH, et al . The internal validity of a dietary pattern analysis. The Framingham Nutrition Studies. J Epidemiol Commun Health 2002;56:381-8.  Back to cited text no. 26    
27.Martinez ME, Marshall JR, Sechrest L. Invited commentary: Factor analysis and the search for objectivity. Am J Epidemiol 1998;148:17-9.  Back to cited text no. 27  [PUBMED]  [FULLTEXT]
28.Hoffmann K, Schulze MB, Schienkiewitz A, Nothlings U, Boeing H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol 2004;159:935-44.  Back to cited text no. 28  [PUBMED]  [FULLTEXT]
29.Leeden RV. Reduced rank regression with structured residuals. Leiden. DSWO Press: the Netherlands; 1990.  Back to cited text no. 29    
30.Hoffmann K, Boeing H, Boffetta P, Nagel G, Orfanos P, Ferrari P, et al . Comparison of two statistical approaches to predict all-cause mortality by dietary patterns in German elderly subjects. Br J Nutr 2005;93:709-16.  Back to cited text no. 30  [PUBMED]  [FULLTEXT]
31.Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, et al . Structure of dietary measurement error: Results of the open biomarker study. Am J Epidemiol 2003;158:14-26.  Back to cited text no. 31  [PUBMED]  [FULLTEXT]
32.Schulze MB, Hoffmann K, Kroke A, Boeing H. An approach to construct simplified measures of dietary patterns from exploratory factor analysis. Br J Nutr 2003;89:409-19.  Back to cited text no. 32  [PUBMED]  [FULLTEXT]
33.Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma KN. Eating patterns and risk of colon cancer. Am J Epidemiol 1998;148:4-16.  Back to cited text no. 33  [PUBMED]  [FULLTEXT]
34.Hu FB, Rimm E, Smith-Warner SA, Feskanich D, Stampfer MJ, Ascherio A, et al . Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 1999;69:243-9.  Back to cited text no. 34  [PUBMED]  [FULLTEXT]
35.Osler M, Heitmann BL, Gerdes LU, Jorgensen LM, Schroll M. Dietary patterns and mortality in Danish men and women: A prospective observational study. Br J Nutr 2001;85:219-25.  Back to cited text no. 35  [PUBMED]  [FULLTEXT]
36.Tseng M, DeVillis R. Correlates of the "western" and "prudent" diet patterns in the us. Ann Epidemiol 2000;10:481-2.  Back to cited text no. 36  [PUBMED]  [FULLTEXT]
37.Fung TT, Willett WC, Stampfer MJ, Manson JE, Hu FB. Dietary patterns and the risk of coronary heart disease in women. Arch Intern Med 2001;161:1857-62.  Back to cited text no. 37  [PUBMED]  [FULLTEXT]
38.Heidemann C, Hoffmann K, Spranger J, Klipstein-Grobusch K, Mohlig M, Pfeiffer AF, et al . A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study cohort. Diabetologia 2005;48:1126-34.  Back to cited text no. 38  [PUBMED]  [FULLTEXT]
39.Schulze MB, Hoffmann K, Manson JE, Willett WC, Meigs JB, Weikert C, et al . Dietary pattern, inflammation and incidence of type 2 diabetes in women. Am J Clin Nutr 2005;82:675-84.  Back to cited text no. 39  [PUBMED]  [FULLTEXT]
40.Hernandez-Mijares A, Lluch I, Vizcarra E, Martinez-Triguero ML, Ascaso JF, Carmena R. Ciprofibrate effects on carbohydrate and lipid metabolism in type 2 diabetes mellitus subjects. Nutr Metab Cardiovasc Dis 2000;10:1-6.  Back to cited text no. 40  [PUBMED]  
41.Wagner AM, Ordonez-Llanos J, Caixas A, Bonet R, de Leiva A, Perez A. Quantitative effect of glycaemic improvement on the components of diabetic dyslipidaemia: A longitudinal study. Diabetes Res Clin Pract 2005;68:81-3.  Back to cited text no. 41  [PUBMED]  [FULLTEXT]
42.Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: Association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997;40:1286-92.  Back to cited text no. 42  [PUBMED]  [FULLTEXT]
43.Lihn AS, Pedersen SB, Richelsen B. Adiponectin: Action, regulation and association to insulin sensitivity. Obes Rev 2005;6:13-21.  Back to cited text no. 43    
44.Khani BR, Ye W, Terry P, Wolk A. Reproducibility and validity of major dietary patterns among Swedish women assessed with a food-frequency questionnaire. J Nutr 2004;134:1541-5.  Back to cited text no. 44  [PUBMED]  [FULLTEXT]
45.Hu FB, Rimm EB, Stampfer MJ, Ascherio A, Spiegelman D, Willett WC. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr 2000;72:912-21.  Back to cited text no. 45  [PUBMED]  [FULLTEXT]
46.Schmidt LE, Rost KM, McGill JB, Santiago JV. The relationship between eating patterns and metabolic control in patients with non-insulin-dependent diabetes mellitus (NIDDM). Diabetes Educ 1994;20:317-21.  Back to cited text no. 46  [PUBMED]  


  [Table - 1]

This article has been cited by
1 Association between diet and cardiovascular disease and overall mortality risk in France and Northern Ireland: the PRIME study
N. McCloskey,M. C. McKinley,D. Arveiler,B. Haas,P. Amouyel,J. Dallongeville,J. Ferrières,V. Bongard,F. Kee,A. Bingham,P. Ducimetière,J. V. Woodside
Proceedings of the Nutrition Society. 2013; 72(OCE3)
[Pubmed] | [DOI]
2 A Mediterranean diet improves HbA1c but not fasting blood glucose compared to alternative dietary strategies: a network meta-analysis
P. Carter,F. Achana,J. Troughton,L. J. Gray,K. Khunti,M. J. Davies
Journal of Human Nutrition and Dietetics. 2013; : n/a
[Pubmed] | [DOI]
3 What do review papers conclude about food and dietary patterns?
Elisabet Wirfält,Isabel Drake,Peter Wallström
Food & Nutrition Research. 2013; 57(0)
[Pubmed] | [DOI]
4 A comparison of dietary patterns of middle aged men in France and Northern Ireland: the PRIME Study
N. McCloskey,M. C. McKinley,D. Arveiler,B. Haas,P. Amouyel,J. Dallongeville,J. Ferrières,V. Bongard,F. Kee,A. Bingham,P. Ducimetière,J. V. Woodside
Proceedings of the Nutrition Society. 2012; 71(OCE2)
[Pubmed] | [DOI]
5 Dietary recommendations for the prevention of type 2 diabetes: What are they based on?
Carter, P. and Khunti, K. and Davies, M.J.
Journal of Nutrition and Metabolism. 2012; 2012(847202)
6 Roles of whole grains-based products in maintaining treatment targets among Type 2 diabetes mellitus patients
Nor Munirah, M.Y. and Siti Shafurah, A. and Norazmir, M.N. and Hayati Adilin, M.A.M. and Ajau, D.
Asian Journal of Clinical Nutrition. 2012; 4(2): 67-76
7 Evaluation of food intake markers in the Brazilian surveillance system for chronic diseases - VIGITEL (2007-2009) [Avaliação dos marcadores de consumo alimentar do VIGITEL (2007-2009)]
de Moura Souza, A. and Bezerra, I.N. and Cunha, D.B. and Sichieri, R.
Revista Brasileira de Epidemiologia. 2011; 14(SUPPL. 1): 44-52
8 Association between muscle mass, leg strength, and fat mass with physical function in older adults: Influence of age and sex
Bouchard, D.R. and Héroux, M. and Janssen, I.
Journal of Aging and Health. 2011; 23(2): 313-328
9 Genetic etiology of type 2 diabetes mellitus: a review
Uma Jyothi Kommoju, Battini Mohan Reddy
International Journal of Diabetes in Developing Countries. 2011;
[VIEW] | [DOI]
10 Vegetarian diets and incidence of diabetes in the Adventist Health Study-2
S. Tonstad, K. Stewart, K. Oda, M. Batech, R.P. Herring, G.E. Fraser
Nutrition Metabolism and Cardiovascular Diseases. 2011;
[VIEW] | [DOI]
11 A European evidence-based guideline for the prevention of type 2 diabetes
Paulweber, B., Valensi, P., Lindström, J., Lalic, N.M., Greaves, C.J., McKee, M., Kissimova-Skarbek, K., Yilmaz, T.
Hormone and Metabolic Research. 2010; 42((SUPPL 1)): S3-S36
12 Prevalence of the metabolic syndrome among rural original adults in NingXia, China
Yi, Z., Jing, J., Xiu-Ying, L., Hongxia, X., Jianjun, Y., Yuhong, Z.
BMC Public Health. 2010; 10(art no 140)
13 A comparison of three statistical methods applied in the identification of eating patterns [Comparação de três métodos estatísticos aplicados na identifi cação de padrões alimentares]
Cunha, D.B. and de Almeida, R.M.V.R. and Pereira, R.A.
Cadernos de Saude Publica. 2010; 26(11): 2138-2148
14 Development and Validation of a Semi-Quantitative Food Frequency Questionnaire to Assess Diets of Korean Type 2 Diabetic Patients
Seongbin Hong, Yunjin Choi, Hun-Jae Lee, So Hun Kim, Younju Oe, Seung Youn Lee, Moonsuk Nam, Yong Seong Kim
Korean Diabetes Journal. 2010; 34(1): 32
[VIEW] | [DOI]
15 Prevalence of the Metabolic Syndrome among rural original adults in NingXia, China
Zhao Yi, Jin Jing, Liu Xiu-ying, Xu Hongxia, Yang Jianjun, Zhang Yuhong
BMC Public Health. 2010; 10(1)
[Pubmed] | [DOI]
16 Dietary patterns and the risk of mortality: impact of cardiorespiratory fitness
M. Heroux, I. Janssen, M. Lam, D.-c. Lee, J. R Hebert, X. Sui, S. N Blair
International Journal of Epidemiology. 2010; 39(1): 197
[VIEW] | [DOI]
17 Dietary patterns and the risk of non-Hodgkin lymphoma: the multiethnic cohort
Jasmeet K. Gill, Song-Yi Park, Laurence N. Kolonel, Eva Erber, Gertraud Maskarinec
Leukemia and Lymphoma. 2009; 50(8): 1269
[VIEW] | [DOI]
18 Effect of Zinc Sulfate Supplementation on Lipid and Glucose in Type 2 Diabetic Patients
Afkhami-Ardekani, M. and Karimi, M. and Mohammadi, S.M. and Nourani, F.
Pakistan Journal of Nutrition. 2008; 7(4): 550-553
19 Effect of sodium metavanadate supplementation on lipid and glucose metabolism biomarkers in type 2 diabetic patients
Afkhami-Ardekani, M., Karimi, M., Mohammadi, S.M., Nourani, F.
Malaysian Journal of Nutrition. 2008; 14(1): 113-119


Print this article  Email this article
Previous article Next article
Online since 12th February '04
© 2004 - Journal of Postgraduate Medicine
Official Publication of the Staff Society of the Seth GS Medical College and KEM Hospital, Mumbai, India
Published by Wolters Kluwer - Medknow