1 |
Formulation of rifampicin softpellets for high dose delivery to the lungs with a novel high dose dry powder inhaler |
|
|
| Christian Etschmann, Regina Scherließ |
|
| International Journal of Pharmaceutics. 2022; : 121606 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
2 |
Indian Guidelines on Nebulization Therapy |
|
|
| S.K. Katiyar, S.N. Gaur, R.N. Solanki, Nikhil Sarangdhar, J.C. Suri, Raj Kumar, G.C. Khilnani, Dhruva Chaudhary, Rupak Singla, Parvaiz A. Koul, Ashok A. Mahashur, A.G. Ghoshal, D. Behera, D.J. Christopher, Deepak Talwar, Dhiman Ganguly, H. Paramesh, K.B. Gupta, Mohan Kumar T, P.D. Motiani, P.S. Shankar, Rajesh Chawla, Randeep Guleria, S.K. Jindal, S.K. Luhadia, V.K. Arora, V.K. Vijayan, Abhishek Faye, Aditya Jindal, Amit K. Murar, Anand Jaiswal, Arunachalam M, A.K. Janmeja, Brijesh Prajapat, C. Ravindran, Debajyoti Bhattacharyya, George D'Souza, Inderpaul Singh Sehgal, J.K. Samaria, Jogesh Sarma, Lalit Singh, M.K. Sen, Mahendra K. Bainara, Mansi Gupta, Nilkanth T. Awad, Narayan Mishra, Naveed N. Shah, Neetu Jain, Prasanta R. Mohapatra, Parul Mrigpuri, Pawan Tiwari, R. Narasimhan, R Vijai Kumar, Rajendra Prasad, Rajesh Swarnakar, Rakesh K. Chawla, Rohit Kumar, S. Chakrabarti, Sandeep Katiyar, Saurabh Mittal, Sonam Spalgais, Subhadeep Saha, Surya Kant, V.K. Singh, Vijay Hadda, Vikas Kuma |
|
| Indian Journal of Tuberculosis. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
3 |
Inhalable Mannosylated Rifampicin–Curcumin Co-Loaded Nanomicelles with Enhanced In Vitro Antimicrobial Efficacy for an Optimized Pulmonary Tuberculosis Therapy |
|
|
| Juan M. Galdopórpora, Camila Martinena, Ezequiel Bernabeu, Jennifer Riedel, Lucia Palmas, Ines Castangia, Maria Letizia Manca, Mariana Garcés, Juan Lázaro-Martinez, Maria Jimena Salgueiro, Pablo Evelson, Nancy Liliana Tateosian, Diego Andres Chiappetta, Marcela Analia Moretton |
|
| Pharmaceutics. 2022; 14(5): 959 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
4 |
Isoniazid Population Pharmacokinetics and Dose Recommendation for Korean Patients With Tuberculosis Based on Target Attainment Analysis |
|
|
| Yong-Soon Cho, Tae Won Jang, Hyo-Jung Kim, Jee Youn Oh, Hyun-Kyung Lee, Hye Kyeong Park, Jong-Lyul Ghim, Nguyen Phuoc Long, Yumi Park, Young-Kyung Choi, Nguyen Thi Thu Phuong, Jae-Gook Shin |
|
| The Journal of Clinical Pharmacology. 2021; 61(12): 1567 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
5 |
Nanoparticle-mediated macrophage targeting—a new inhalation therapy tackling tuberculosis |
|
|
| Shaimaa Makled, Nabila Boraie, Noha Nafee |
|
| Drug Delivery and Translational Research. 2021; 11(3): 1037 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
6 |
Development and in vitro-in vivo performances of an inhalable indole-3-carboxaldehyde dry powder to target pulmonary inflammation and infection |
|
|
| Matteo Puccetti, Larissa Gomes dos Reis, Marilena Pariano, Claudio Costantini, Giorgia Renga, Maurizio Ricci, Daniela Traini, Stefano Giovagnoli |
|
| International Journal of Pharmaceutics. 2021; 607: 121004 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
7 |
In Vivo Biodistribution of Respirable Solid Lipid Nanoparticles Surface-Decorated with a Mannose-Based Surfactant: A Promising Tool for Pulmonary Tuberculosis Treatment? |
|
|
| Eleonora Truzzi, Thais Leite Nascimento, Valentina Iannuccelli, Luca Costantino, Eliana Martins Lima, Eliana Leo, Cristina Siligardi, Magdalena Lassinantti Gualtieri, Eleonora Maretti |
|
| Nanomaterials. 2020; 10(3): 568 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
8 |
Development of inhaled formulation of modified clofazimine as an alternative to treatment of tuberculosis |
|
|
| Renata Ribeiro de Castro, Valério Todaro, Luiz Claudio Rodrigues Pereira da Silva, Alice Simon, Flavia Almada do Carmo, Valeria Pereira de Sousa, Carlos Rangel Rodrigues, Bruno Sarmento, Anne Marie Healy, Lucio Mendes Cabral |
|
| Journal of Drug Delivery Science and Technology. 2020; 58: 101805 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
9 |
Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis |
|
|
| Estefanía Grotz, Nancy L. Tateosian, Jimena Salgueiro, Ezequiel Bernabeu, Lorena Gonzalez, Maria Letizia Manca, Nicolas Amiano, Donatella Valenti, Maria Manconi, Verónica García, Marcela A. Moretton, Diego A. Chiappetta |
|
| Journal of Drug Delivery Science and Technology. 2019; 53: 101170 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
10 |
Population Modeling and Simulation Study of the Pharmacokinetics and Antituberculosis Pharmacodynamics of Isoniazid in Lungs |
|
|
| L. Lalande, L. Bourguignon, S. Bihari, P. Maire, M. Neely, R. Jelliffe, S. Goutelle |
|
| Antimicrobial Agents and Chemotherapy. 2015; 59(9): 5181 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
11 |
Nanopolymersomes as potential carriers for rifampicin pulmonary delivery |
|
|
| Marcela A. Moretton,Maximiliano Cagel,Ezequiel Bernabeu,Lorena Gonzalez,Diego A. Chiappetta |
|
| Colloids and Surfaces B: Biointerfaces. 2015; 136: 1017 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
12 |
Inhaled Solid Lipid Microparticles to target alveolar macrophages for tuberculosis |
|
|
| Eleonora Maretti,Tiziana Rossi,Moreno Bondi,Maria Antonietta Croce,Miriam Hanuskova,Eliana Leo,Francesca Sacchetti,Valentina Iannuccelli |
|
| International Journal of Pharmaceutics. 2014; 462(1-2): 74 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
13 |
The Influence of Feedstock and Process Variables on the Encapsulation of Drug Suspensions by Spray-Drying in Fast Drying Regime: The Case of Novel Antitubercular Drug-Palladium Complex Containing Polymeric Microparticles |
|
|
| Stefano Giovagnoli,Francesco Palazzo,Alessandro Di Michele,Aurelie Schoubben,Paolo Blasi,Maurizio Ricci |
|
| Journal of Pharmaceutical Sciences. 2014; 103(4): 1255 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
14 |
In Silico children and the glass mouse model: Clinical trial simulations to identify and individualize optimal isoniazid doses in children with tuberculosis |
|
|
| Jeena, P.M., Bishai, W.R., Pasipanodya, J.G., Gumbo, T. |
|
| Antimicrobial Agents and Chemotherapy. 2011; 55(2): 539-545 |
|
| [Pubmed] [Google Scholar] |
|
15 |
An oracle: Antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future |
|
|
| Pasipanodya, J., Gumbo, T. |
|
| Antimicrobial Agents and Chemotherapy. 2011; 55(1): 24-34 |
|
| [Pubmed] [Google Scholar] |
|
16 |
An Oracle: Antituberculosis Pharmacokinetics-Pharmacodynamics, Clinical Correlation, and Clinical Trial Simulations To Predict the Future |
|
|
| Jotam Pasipanodya, Tawanda Gumbo |
|
| Antimicrobial Agents and Chemotherapy. 2011; 55(1): 24 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
17 |
In Silico
Children and the Glass Mouse Model: Clinical Trial Simulations To Identify and Individualize Optimal Isoniazid Doses in Children with Tuberculosis
|
|
|
| Prakash M. Jeena, William R. Bishai, Jotam G. Pasipanodya, Tawanda Gumbo |
|
| Antimicrobial Agents and Chemotherapy. 2011; 55(2): 539 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
18 |
Penetration of Anti-Infective Agents into PulmonaryEpithelial Lining Fluid : Focus on Antifungal, Antitubercular and Miscellaneous Anti-Infective Agents |
|
|
| Keith A. Rodvold, Liz Yoo, Jomy M. George |
|
| Clinical Pharmacokinetics. 2011; 50(11): 689 |
|
| [HTML Full text] [Google Scholar] [DOI] |
|
19 |
New Susceptibility Breakpoints for First-Line Antituberculosis Drugs Based on Antimicrobial Pharmacokinetic/Pharmacodynamic Science and Population Pharmacokinetic Variability |
|
|
| Tawanda Gumbo |
|
| Antimicrobial Agents and Chemotherapy. 2010; 54(4): 1484 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
20 |
New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability |
|
|
| Gumbo, T. |
|
| Antimicrobial Agents and Chemotherapy. 2010; 54(4): 1484-1491 |
|
| [Pubmed] [Google Scholar] |
|